账号:
密码:
最新动态
产业快讯
CTIMES / 文章 /
建立跨领域知识 成为现代工程师刻不容缓的课题
 

【作者: Jan Whitacre】2013年02月27日 星期三

浏览人次:【1073717】

英国伦敦有数千台由合格出租车司机驾驶的「黑头出租车」。为了取得出租车牌照,这些司机必须通过考试,证明他们对每一条街道名称、每一个转弯、从甲地到乙地的路线都了若指掌。考试前,他们花了几个月的时间进行训练:带着地图、骑自行车或摩托车,不停在大街小巷中穿梭,以便熟悉所有街道路线、单行道,以及快速的捷径。 。


这种情况跟当今的量测产业趋势很像。传统量测科学的目标是提供资料(地图),却全然忽略过程中的体验与努力,因此这种方式已经落伍了。现在和未来的设计与量测工具需要提供比原始量测资料还要更多的知识,并提供可继续向下一步迈进的工具。此外,随着多功能产品的兴起,元件和系统整合将变得愈来愈普遍,但工程师的付出与收获可能不成正比。


以无线区域网路为例。新的802.11ac标准即将核准,未来将大幅改善家庭和小型办公网路的网路速度和容量。新标准支援更宽的RF频宽、更高的调变密度和更多空间多工串流。过没多久,市场中将充斥着数​​以百万计售价低廉的新型路由器,因此如果能省下几毛钱的材料或零件成本,便可显著降低制造成本并提高公司获利能力。射频放大器是成本最高的元件之一,现在它需要在更宽的频宽中执行线性运作(包括分割后的80+80 MHz 非连续通道,请见图1)。



图一 : 欧洲、日本及全球之IEEE 802.11ac频谱分配
图一 : 欧洲、日本及全球之IEEE 802.11ac频谱分配

为了降低成本,厂商尝试使用较便宜,但规格不够严谨的零件,因此需在输入端修正输出线性误差。听起来好像还好?由于放大器具有数位I/Q输入和RF输出,因此必须具备跨越不同领域的知识才能有效进行修正!


数位预失真技术可改善功率放大器线性度,它需产生并量测频宽比线性化放大器宽3到5倍的信号。此时可使用控制软体来产生激发波形,然后将它下载到射频信号产生器并输入功率放大器, 接着可使用信号分析仪来撷取放大器的响应,并且与可建立预失真矩阵的信号相比较。经过预失真处理的信号会被输入功率放大器并且检查响应。


图2显示建立修正矩阵所需的预失真系统。



图二 : 数字预失真系统
图二 : 数字预失真系统

另一方面,行动通讯业者相继推出基于3GPP LTE标准的第四代蜂巢式网路。为了改善服务品质,特别是细胞边缘的传输品质,业者在基地台发射器中使用一种名为波束成形(beamforming)的技术。


此技术非常适合用于采分时多工(TDD)模式的LTE网路,其中上行链路和下行链路在相同频率下运作。当相同的信号从两个或多个位于不同空间的发送点发送出来时,波束成形技术可发现干扰码型。


藉由使用基地台(或称为eNB)的线性阵列天线来传送和接收信号,并且小心控制施加于每个天线元件传送之资料符号副本的相对振幅和相位权重,便可即时修正所产生的波束码型,并集中特定行动装置(UE)传输方向中的发射能量和接收灵敏度。当其他行动装置正与相邻基地台通讯时,如此有助于减少对它们的干扰。


您必须知道细胞中的UE位置,才能选择最佳的下行链路传输波束。 eNB通常会直接量测接收到的上行链路参考信号,并据此预估最佳权重。您可在整体eNB接收器阵列中观察这些信号,接着可使用这些资讯来计算上行链路到达角度(AOA),并且分解通道特性矩阵。


图3显示eNB1正在与目标装置UE1通讯,过程中eNB1使用波束成形技术进行传输,以便将UE1方向的信号功率最大化。与此同时,它试图将对UE2的干扰降到最低,因此控制了UE2方向的功率零值位置。同样的,eNB2亦使用波束成形技术提高其UE2方向的传输接收度,并且将对UE1的干扰降到最低。



图三 : 透过波束成形技术提升细胞边缘的传输效率
图三 : 透过波束成形技术提升细胞边缘的传输效率

要如何检查新开发的装置是否支援前述流程呢?波束成形技术的一项主要测试挑战是需在实体RF天线阵列上验证波束成形的信号传输效能,并以视觉化方式呈现结果。这样做的目的是为了验证eNB RF天线校验准确度和基频编码的波束成形加权算演算法的正确性。


由此可见,系统校验是获得出色量测准确度的关键要素。图4显示典型的波束成形测试系统。



图四 : 典型的TD-LTE波束成形测试系统配置
图四 : 典型的TD-LTE波束成形测试系统配置

如图4所示,修正精灵会引导使用者完成系统校验、提示使用者将信号分析仪的通道1量测缆线,连接到位于注入点(以虚线表示)之双向校验分路器的第一输出埠。所有的跨通道特性量测都将参考通道1。修正精灵可对跨通道修正进行分析,以便针对量测缆线、连接器、分路器,和衰减器固有的不匹配效应,补偿信号分析仪之波束成形量测结果。


从产品开发的角度来看,多天线波束成形传输技术带来不少测试挑战,比方说工程师需验证基地台基频接收/发送演算法是否正确部署,以便产生波束成形权重。在此情况下,工程师必须在产品开发和网路相容性测试过程中,在各种不同的运作状况下,同时验证内建于基地台和行动装置的量测功能。


所得的量测结果是否的正确,取决于工程师是否清楚认识这个量测概念、是否充分掌握整体系统特性,以及是否执行准确的校验性能验证。其中牵涉到许多复杂的因素,包括在即时且不停变动的环境中使用的RF元件、数位基频和复杂的运算设计元件。唯有如此,消费者才会对新的行动装置感到满意。否则,他们将立即弃而不用并转而投向竞争对手的怀抱。


所以,未来是不是还会有所谓的纯RF工程师?答案是:「没有」。很多例子显示,工程师需要更广泛地了解系统特性,在技术领域中这种情形屡见不鲜,包括航空电子、汽车和隐密通讯产业的工程师,都需具备跨域知识。


以前的工程师只要专精一个领域即可(例如运算、数位信号处理、逻辑分析仪、射频等等),但是现在却行不通了,因为许多新的设计需要用到不只一个领域的工程技能,而且不同领域的技术必须交互运作。如何在广大的整合系统中,快速从某个领域跨越到另一个领域,成了21世纪的工程师亟需克服的难题。


(本文作者任职于安捷伦科技)


相关文章
蜂巢式行动装置制造测试大变革
使用高效能数字转换器 提升相位数组天线测试速度
揭开频谱分析仪相位噪声量测整合 相位偏差结果之神秘面纱
「实现行动装置设计关键任务」研讨会实录
comments powered by Disqus
相关讨论
  相关新闻
» R&S展示蓝牙通道探测信号测量 以提高定位精度
» 太克收购EA Elektro-Automatik 为全球电气化提供扩展电源产品组合
» 安立知全新模组可模拟MIMO连接 打造稳定5G/Wi-Fi评估环境
» 攸泰科技倡议群策群力 携手台湾低轨卫星终端设备夥伴展现整合能量
» 安立知强化支援GEO卫星NTN NB-IoT装置协议测试解决方案


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 远播信息股份有限公司版权所有 Powered by O3  v3.20.1.HK84J237M4MSTACUK1
地址:台北数位产业园区(digiBlock Taipei) 103台北市大同区承德路三段287-2号A栋204室
电话 (02)2585-5526 #0 转接至总机 /  E-Mail: webmaster@ctimes.com.tw