账号:
密码:
 
CTIMES / 新闻 /
判读医疗影像 Google机器学习可??预防糖尿病患失明
 

Rapport \u3011    2017年08月08日 星期二

浏览人次:【2798】
  

人工智慧(AI)究竟可如何改善人类生活?该项技术目前已经被应用於许多产业中,但若是要说「嘉惠」於人类,那麽必定非医疗领域莫属;看好人工智慧在医疗领域中的应用,IBM、微软(Microsoft)等大厂皆已将AI导入医疗领域中;如今Google也欲透过该公司的TenserFlow机器学习技术,以辨识糖尿病患者视网膜影像,降低罹患该项病症患者失明的可能性。

Google台湾区分公司总经理简立峰认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力。
Google台湾区分公司总经理简立峰认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力。

Google研究团队产品经理、医学博士彭浩怡举例,在印度有高达45%的糖尿病患,因为缺乏专业眼科医生,所以在视网膜病变确诊之前早已失明;但糖尿病视网膜病变其实是可预防的,只需要有足够的专业医生,并透过视网膜眼底图像即可判断病患的视网膜是否已产生病变。

彭浩怡表示,若是运用机器学习技术,即可缩短医生判读的时间,筛检出有问题的视网膜影像。为此,该公司团队聘请54名美国食药监局(FDA)认可的眼科医师与相关专业人士,取得13万张眼底图像,最终标记出超过88万个确诊症状,利用这些资料让机器可进行判读作业。

据了解,彭浩怡的团队建立了26层的深度卷积神经网路(Convolutional Neural Network),标记好素材後再对机器进行训练。随着真实资料量日益丰富,再加上运算能力较过往强大数千万倍,使得神经网路表现较以往其他的网路更好。

除了糖尿病视网膜病变的判断之外,彭浩怡也表示,该公司的TensorFlow机器学习技术目前也用於判读乳癌或前列腺癌等切片影像中,希??未来可协助相关医生进行病症判断。

Google台湾区分公司总经理简立峰也认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力,值得台湾相关领域关注;再加上台湾糖尿病盛行率为世界第二,仅次於日本,所以国内也有相当庞大的相关资料量。

最後,彭浩怡也表示,未来深度学习将往临床验证、建立医疗团队的信任感,以及机器辨识流程符合医生工作需求等三大方向进行。由於要使医界愿意信任且采用新技术有一定的难度,且新式工具是真正可协助医生进行诊断的利器,这些层面,都是未来深度学习需要克服的挑战。

關鍵字: 医疗  機器學習  糖尿病  人工智能  糖尿病  Google 
相关新闻
恩智浦运用Google云端物联网核心促进智慧装置的边缘运算
Waymo 与英特尔联手开发自动驾驶车技术
与Google制造双赢?专家:HTC恐步Nokia後尘消失
HTC宣布与Google完成330亿合作协议
UL IOT论坛探究安全科学辅助创新明日科技
comments powered by Disqus
相关讨论
  相关新品
mbed
原厂/品牌:RS
供应商:RS
產品類別:
Arduino
原厂/品牌:RS
供应商:RS
產品類別:
Raspberry Pi
原厂/品牌:RS
供应商:RS
產品類別:
  相关产品
» Silicon Labs叁考设计简化USB Type-C可充电电池组开发
» Molex新款USB智慧模组提升车内连接功能
» Littelfuse碳化矽MOSFET可在电力电子应用实现超高速切换
» 意法半导体先进汽车处理器内建安全模组
» NETSCOUT发表添加新功能的AIRCHECK G2 v2版本
  相关文章
» 最新dsPIC33EP128GS808 系列数位信号处理器
» 让经济与生态共同永续发展的环保回收科技
» 浅谈智慧建筑的未来
» 了解现代电磁炉的工作原理
» 可携式手腕照护球

AD